
S O M E  R E G U L A R I T I E S  F O R  A C O O L E D  C U R R E N T  L E A D  

A .  V .  E v l a m p i e v  UDC 536,483 

An analyt ical  s tudy is p resen ted  for  leads cooled by the vapor  f r o m  the boiling coolant .  
Graphs  a re  p resen ted  for  leads with a t e m p e r a t u r e  d i f ference  between room t e m p e r a t u r e  
and hel ium t e m p e r a t u r e .  It is found that the model  is of sufficient  a ccu racy  for  design 
calculat ions.  

L o w - t e m p e r a t u r e  e r y o s t a t s  often use  cu r r en t  leads cooled by vapor ,  and this cons iderably  reduces  
the boiling loss .  These  cooled leads have been the subject  of s e v e r a l  s tudies  [1-10], but there  is no theory 
that d e s c r i b e s  all  the obse rved  p rope r t i e s ,  and such a theory  should desc r ibe  reasonab ly  accura te ly  a su i t -  
able means  of designing them.  The p re sen t  study a t tempts  to fill this gap. 

1. Cooled leads a re  used mainly  for  superconduct ing devices ,  so one can avoid heat  r e l e a s e  in par t  
of the lead d i rec t ly  adjoining the liquid coolant by using superconduc tors  [1]. The r e s i s t i v e  pa r t  of the lead 
above the superconduct ing one should const i tute a good heat  exchanger  in contact  with the vapor .  One can 
r e p r e s e n t  the specif ic  r e s i s t ance  of the meta l  as a function of t e m p e r a t u r e  via  a l inear  re la t ionship  to a 
f i r s t  approximat ion;  the t he rma l  conductivity is a s sumed  constant,  and then the ,assumption of ideal heat  
t r a n s f e r *  gives the di f ferent ia l  equation for  the s t eady - s t a t e  hea t - f lux  dis t r ibut ion in the lead as 

dx 2 dx  \ 2 ] ,  

The quantity f~ appear ing  in the equation can be der ived f r o m  

T2 T~ 
.I ~ (r) dT = ~ .I rdT.  (2) 
T I 2"~ 

We solve (1) to find the t e m p e r a t u r e  dis t r ibut ion in the lead with the boundary conditions T = T 1 at x = 0 
and T = T 2 at x = 1, the r e su l t  being 

_ ' x x - -  ~ - V ' I 2 - - M ~ )  ( M  " ' 
(3) 

Here  I > M; if I < M, the s ines a re  replaced by hyperbol ic  funetions.~ In p rac t ice ,  T 2 >>T1, so  the lead 
t e m p e r a t u r e  is de te rmined  mainly  by the f i r s t  t e r m  in (3). He re  we use (3) without the second t e rm,  which 
is just if ied for  p(T 0 << P(T2) and is equivalent to neglect ing the Joule heat  at the cold and re la t ive  to the 
heat  produced in the r e s t  of the lead. 

The thermal -conduc t ion  equation gives the heat  flux into the liquid as 

Q = ~.sdT (x)/dx I~=0. (4) 

We subst i tute  for  T(x) f r o m  (3) to get a fo rmula  for  Q in the genera l  case  where  M and I may  take any 
va lues ;  on the other  hand, these  quantit ies a re  linked in a c ryos t a t  with such leads, s ince the evapora t ion  
ra te  is de te rmined  by Q: 

*The hea t - exchange r  design is not cons ide red  he re .  
JThis  applies  to all  the t r igonomet r i c  functions appear ing below. 
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Fig. 1. Dynamic cha rac te r i s t i c s :  1) K(K 0 = 0); 2) Mop t = f(Iopt) ; 3) 

M(K 0 = 0.75); 4) M(K 0 = 0.5); 5) M(K 0 = 0); 6) M = 1; 7) Mcr max; 8) 

Mcr  min" 

Fig. 2. Charac te r i s t i c  points of the dynamic charac te r i s t i c  in re la -  

tion to K 0. 

n (m - -  too) = Q (5) 

We equate (4) and (5) to get the t ranscendental  equation 

K__ Ko = D ;/1 --K~-exp (--M/2) (6) 
2 sin (M ] /K  -2 - -  I/2) 

If D is given, this equation defines the functions K = f(I) and M = f(I) (the lat ter  is called the dynamic cha r -  
ac te r i s t i c s  of the lead). We get a family of these functions for var ious m 0. 

We see f rom (6) that K ~ 1 for  I --0% i.e., the dynamic cha rac te r i s t i c s  tend asymptot ical ly  to the 
l inear  function M = I (Fig. 1). This agrees  with relat ionships obtained by experiment  [2] and f rom theory 
[3] on the assumption that p = const, ~ - const. F rom the definition of K for  i >> lop t we have m - 2 i 4 ~ / c ;  
if the proper t ies  of the metal  follow the Wiedemann-  Franz law then ~ = Irk/e4-3 = const, and the evapora-  
tion rate is dependent only on the cur ren t  and the specific heat of the vapor.  

The evaporation rate falls when the cur rent  is switched off, but it remains  higher than m 0 and is de- 
termined by the thermal  conductivity of the leads. 

If the cur rent  is g r ea t e r  than the optimal value, there is a tempera ture  r i se  (Tmax/T2) in the leads 
defined by (3), in which 

- -  arctg (~ '12 - -  M2/M) 
x = ( 7 )  

}/-fi __ M212 

is the coordinate of the point in the lead having the highest  t empera ture .  In these formulas,  M and I must  
be taken in accordance with the appropriate  dynamic charac te r i s t i c ,  

By opposing various conditions on (6) we have obtained a se r i e s  of relat ionships defining the behavior 
of the cha rac te r i s t i c  points as K 0 var ies ;  the result ing equations were solved graphical ly .  It was assumed 
that AT = T 2 - T  1 '-" T 2 = 300~ ~ / c  = 3.95~ which cor responds  to the cur ren t  input conditions for leads 
working between room tempera ture  and liquid helium. Figures  1-5 give the resul ts .  

Figure 1 shows the following functions: three dynamic charac te r i s t i c s  for  K 0 = 0; 0.5; 0.75; the asymp-  
tote M = I, to which these tend for I ~ oo; a graph for the shift inthe opt imalpoiat  Mopt(Iopt) as K 0 inc reases ;  
and two graphs for the cr i t ica l  values of M and I (see below on cr i t ical  values).  The dynamic cha rac t e r i s -  
t ics  show how m increases  if i r i ses  f rom 0 to oo for var ious  m0; here  K dec reases  f rom oo to its least  
value Kopt, on the way passing through unity and then r is ing asymptot ical ly  towards unity. 

Figure 2 shows how the charac te r i s t i c  points va ry  with K0; the functions Mopt(K0) and Iopt(K0) give 
the displacement  of the optimal point at which the s t ra ight  line f rom the origin of slope Kop t (K0) touches 
the dynamic charac te r i s t i c .  The function Mint(K0) defines the behavior of the point of intersect ion between 
the dynamic charac te r i s t i c  and the asymptote M = I, while M(0) = f(K 0) does the same for  the intersect ion 
with the ordinate axis. 
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Coordinate  of the hot tes t  point and t e m p e r a t u r e  r i s e  for  K 0 

Fig. 4. Compar i son  of calcula t ions  with published da ta  in d imen-  
s ion less  fo rm:  1 and 2) l ines r ep resen t ing~a tcu la t ions  for  K 0 of 0 
and 0.1 respec t ive ly ,  points f r o m  [1]; 1, I) lop t = 2 • 1320 A; 2, II) 
lop t = 2 • 500 A; 3) points f r o m  [2], line calculated for  m 0 =,f(i) via  
the law of curve  4; 3, III) lop t = 2  x 10 A; 4) points for  M 0 calculated 
f r o m  the expe r imen ta l  points 3 via  Fig. 1, M 0 = f(I); 5) quadrat ic  
re la t ionship  c lo ses t  to the law of curve  4, M 0 = 0.07 IS; 6) Mcr  max 
= f(I); 7) M = I. 

If I > Iopt, the dynamic cha rac t e r i s t i c  (Fig. 1) v e r y  rapidly approaches  the Mcr .min( l  ) value, while 
r emain ing  above it, but being below Mopt(Iopt) ; if the above p rope r t i e s  a re  known and we have avai lable  
the functions shown in Fig.  2, we can cons t ruc t  the dynamic c h a r a c t e r i s t i c  for  any K 0 without solving (6). 

F igure  3 shows (3) and (7) as calculated f o r K  0 = 0, with the value of x in (3) taken f r o m  (7). It is 
c l ea r  that cu r ren t s  in excess  of the opt imal  cause  the dis tance f r o m  the cold end to the hot tes t  point to 
diminish,  the resu l t  being 0.5 of the lead length when i / l o p  t ~ 1.6. If the cu r r en t  is inc reased  fur ther ,  
the peak  t e m p e r a t u r e  tends asympto t ica l ly  towards  the hot end. The excess  t e m p e r a t u r e  r i se  (Tmax/T2)  
i n c r e a s e s  fa i r ly  rapidly,  and this f ac to r  becomes  about 3 for  i / l o p  t = 1.41 and about 6 for  i / l o p  t = 1.45. 

2. In some  cases ,  the highest  cu r ren t  has  to be supplied only per iodica l ly  (for instance,  when a f r o -  
zen- in  field is used with a superconduct ing solenoid).  In that case ,  the overa l l  loss  of coolant can be 
reduced by opt imizing the cu r r en t  lead to some  s m a l l e r  cu r ren t .  This  p rob lem can be handled as follows 
if we a s s u m e  that e, X, and fl a re  known: 

1) By specifying the following quantit ies:  m0, imax, Tmax ;  

2) Taking T m a x / T 2  f r o m  a curve  analogous to Fig. 3, we de te rmine  I / I o p  t = i / l o p  t and hence iopt , 
the cu r r en t  for  which the lead should be optimized;  

3) We calcula te  K0, and f r o m  Fig. 2 we de te rmine  Kopt, Iopt, Mopt, M(0); 

4) w e  calcula te  ( l /S)opt  , mopt, m(0); 

5) Knowing I / I o ~  t = i m a x / i o . t  and Iopt, we calculate  the I cor responding  to ima x.  We use the graph  
for  the dynamic c h a r a c t e r i s t i c  cor responding  to this K 0 to de t e rmine  M and calculate  the e v a p o r a -  
tion ra te  m at ima  x. 

3. The  expe r imen ta l  evidence and the fo rmulas  of [3] give us for  fa i r ly  high cu r r en t s  that d m / d i  
4pX/c~? = 0.648 �9 10 -4 g / s e c  .A, where we have taken pX = 0.45 "10 -G W �9 ~ /~  to br ing about ag reemen t  

with exper iment ,  this  cor responding  to the mean  t e m p e r a t u r e  of the lead of about 30~ in that case ,  the 
t e m p e r a t u r e  in the upper  pa r t  of the lead cons iderably  exceeds  room t empera tu r e ,  which r e s t r i c t s  the c u r -  
rent .  

1416 



m_o qL m(O)(~l 
M(O} " M opt " 

/ 
o o, z5 o/+ o, Ts 

Fig .  5, C a l c u l a t e d  v a l u e s  fo r  

x0 

s o m e  r a t i o s  and o b s e r v e d  v a l u e s  

of [1]. 

F i g u r e  1 shows  tha t  c u r r e n t s  l a r g e r  than  the o p t i m a l  va lue  p r o -  
duce  s l o p e s  a p p r o x i m a t e l y  equa l  to uni ty,  s o  d m / d i  --- 2 fl~f~c = 2~k 
/ c e q 3  = 0.602 �9 10 -4 g / s e c  -A .  

The  r a t i o  ( m / i ) o p t  = 2 , 7 1 . 1 0  -3 l / h .  A h a s  b e e n  ob ta ined  [1] a s  
the s a m e  fo r  two s e t s  of l e a d s  made  of e l e c t r o t e c h n i c a l  c o p p e r  w o r k i n g  
at  o p t i m a l  c u r r e n t s  lop t = 2 �9 500 A and lop t = 2.1320 A; the f a c t o r  2 i s  
i n t r o d u c e d  b e c a u s e  a s e t  of l e a d s  c o n s i s t s  of two such .  The  va lue  
m 0 = 0.15 l i t e r / h  = cons t ,  was  d e t e r m i n e d  by  the c r y  o s t a t  u s e d .  
T h e s e  v a l u e s  w e r e  u s e d  to c a l c u l a t e  fi3~ = 2.17 �9 10 -8. W -  ~/~ K0 
= 0.035; 3 m / l  = 0.0865 W / ~  fo r  the  2 • 1320 A s e t  and fi3t = 2.14 x l 0  -8 
W/~2/~ K 0 = 0.0927;  3 ~ s / l  = 0.0314 W / ~  fo r  the  2 x 500 A one ,  T h e n  
the o b s e r v e d  v a l u e s  w e r e  c o n v e r t e d  to the d i m e n s i o n l e s s  M and I, wh ich  
m a y  be  c o m p a r e d  with  the  c a l c u l a t e d  v a l u e s  in  F i g .  4. The  o b s e r v e d  

m ( 0 ) / m o p  t and m 0 / m ( 0  ) f o r  t h e s e  two s e t s  of l e a d s  a r e  shown by p o i n t s  

on the c u r v e s  f o r  the  c a l c u l a t e d  M ( 0 ) / M o p  t = f(K+) and M0/M(0  ) = f(K0) 
( F i g .  5). 

T h e  o b s e r v e d  re(i)  of [2] a r e  shown in F i g .  4 in d i m e n s i o n l e s s  
f o r m .  In the  c o n v e r s i o n  we took a l l  the d i m e n s i o n a l  c o e f f i c i e n t s  in  M 

and I a s  in [2]. Two po in t s  m a y  be  no ted :  the o b s e r v a t i o n s  do not  c o i n c i d e  wi th  the c u r v e s  c a l c u l a t e d  on the 
a s s u m p t i o n  tha t  m 0 = cons t an t ,  and a l s o  t h e r e  was no d a m a g e  to the l e a d s  on us ing  a c u r r e n t  m o r e  than  1.5 
t i m e s  the  c a l c u l a t e d  o p t i m u m  va lue  ( p a p e r  c o m p o n e n t s  w e r e  u s e d  in th i s  d e s i g n  of l ead ) .  Both  f e a t u r e s  
a r e  due to the r e s i s t i v e  p a r t  of the l e ad  d i r e c t l y  in  c o n t a c t  wi th  the  l iquid  coo lan t ,  which  was  b e l o w  the  h e a t  
e x c h a n g e r  (cooled  l e a d  p r o p e r )  and d id  not  exchange  h e a t  e f f i c i e n t l y  with the v a p o r .  The  r e s u l t i n g  Jou le  
h e a t  in th i s  p a r t  went  to e v a p o r a t i o n .  In tha t  c a s e ,  m 0 = f(i),  and then i n c r e a s e s  in I Caused M to d e v i a t e  
f r o m  any s i n g l e  d y n a m i c  c h a r a c t e r i s t i c  (F ig .  1) and to p a s s  f r o m  a c u r v e  of l o w e r  K 0 to one of h i g h e r  K 0. 
tf  the po in t  wi th  c o o r d i n a t e s  M and I in F ig .  t d o e s  not  fa l t  be low the  func t ion  Mopt(Iopt)  , then  the  l e a d s  
do not  b e c o m e  e x c e s s i v e l y  hea t ed ,  a s  F i g .  4 s h o w s .  The  M(I) fo r  v a r i o u s  K 0 of F i g s .  1 and 2 enab l e  one 
to c a l c u l a t e  M0(I) , which  e x p l a i n s  t h e s e  o b s e r v a t i o n s .  One can  c ombine  F i g s .  1 and 4 to d e t e r m i n e  v a l u e s  
fo r  K 0 and I f o r  e ach  po in t .  The  v a l u e s  M 0 = K0I a r e  shown in F ig .  4, t o g e t h e r  with the  a p p r o x i m a t i n g  r e -  
l a t i o n s h i p  M 0 = 0.07 12 ( sub j ec t  to the  cond i t i on  +?m 0 = Ri  2, w h e r e  R = cons t an t ) .  Then  R = 16M0Vfl / / sc I  2 

0 . 2 5 . 1 0  .3 ~ .  

T h e n  R ac t s  a s  an a u t o m a t i c  s o u r c e  of co ld  v a p o r  to coo l  the l e a d s  and t ends  to  s u p p r e s s  the  e x c e s -  
s i ve  h e a t i n g  which  e n a b l e s  one to a t t a i n  m / m ( 0 )  = 3.45;  th i s  p r o p e r t y  can  be u t i l i z e d  f o r  the p u r p o s e s  f o r -  
m u l a t e d  in the p r e c e d i n g  s e c t i o n .  

T h e s e  c o m p a r i s o n s  show that/33~ can  be t aken  as  2.15 �9 10 -8 W �9 ~2/~ 2 f o r  e l e c t r o t e e h n i c a l  c op pe r ,  
but  i t  i s  not  c l e a r  f r o m  e x p e r i m e n t  wha t  v a l u e s  shou ld  be  s e l e c t e d  fo r  fl and ~. ff we u s e  the l i s t e d  d a t a  of 
[11 ] and a s s u m e  P4.2OK = 0.03 /~2" ore, we ge t  f r o m  (2) that/3 = 0.512 �9 10 - s  ~2. c m  / ~ and the c o r r e s p o n d i n g  
va lue  i s  ~ = 4,2 W / c m  �9 ~ 

4. A c h a r a c t e r i s t i c  f e a t u r e  of the c a l c u l a t i o n  is  tha t  one u s e s  only the s i ng l e  n u m e r i c a l  r a t i o  D = ATe  
/+7; the  c a l c u l a t e d  func t ions  d i f f e r  l i t t l e  fo r  d i f f e r e n t  k inds  of m a t e r i a l s  u s e d  fo r  such  l e a d s ,  and the r e l a -  
t i o n s h i p  is  e s s e n t i a l l y  g o v e r n e d  by  the l i n e a r  t e m p e r a t u r e  d e p e n d e n c e  of the p r o d u c t  of the s p e c i f i c  r e s i s -  
t ance  and the t h e r m a l  c o n d u c t i v i t y .  

T h e  i n c r e m e n t  in  the  e v a p o r a t i o n  r a t e  wi th  the  c u r r e n t  is  a p p r o x i m a t e l y  c o n s t a n t  a t  c u r r e n t s  e x c e e d -  
ing  the o p t i m a l  va lue ;  i t  i s  d e p e n d e n t  in the m a i n  on the s p e c i f i c  h e a t  of the v a p o r ,  and i s  l a r g e l y  i n d e p e n -  
den t  of the l e a d  m a t e r i a l  and i s  qui te  i ndependen t  of the n a t u r a l  bo i l ing  r a t e  of the  c r y o s t a t ,  and a l s o  of the  
l eng th  and c r o s s  s e c t i o n  of  the  l e a d s ,  as  we l l  a s  of the t e m p e r a t u r e  at  the ho t  end of the l e ad  and the  l a t en t  
h e a t  of e v a p o r a t i o n .  

T h e  cond i t i on  fo r  an o p t i m u m  in the  l e ad  d Q / d ( l / s )  = 0 i s  equ iva l en t  to the s p e c i f i c a t i o n  d T / d / i x  = 1 
= 0, so  t h e r e  is  no hea t  inf lux  f r o m  the hot  end of the l e a d  in  the o p t i m u m  c a s e ,  and the l iquid  c oo l an t  r e -  
c e i v e s  the p o w e r  d i f f e r e n c e  

Q = P L  - -  meAT.  (8) 

If i > lop t the t e m p e r a t u r e  g r a d i e n t  a t  the  hot  end i n c r e a s e s  v e r y  r a p i d l y ,  as  does  the  h e a t  f lux a long 
the  l e a d .  
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Figure  5 a lso  shows that m(0) and m o p t b e c o m e  indist inguishable f r o m  rr~ as K 0 i n c r e a s e s ;  phys ica l ly  
this means  that  the cur ren t  is so  sma l l  a n d t h e  specif ic  heat  of the vapor  is so la rge  that (8) tends to z e r o .  
Then ( / /S)opt  - -  ~ (M and I --- oo), and this r e su l t  is obtained on account of neglect  of the second t e r m  in (3). 
However ,  one may  a s sume  that the combined leads sugges ted  in [3] will co r re spond  p r e c i s e l y  to our model  
for  z e r o  r e s i s t ance  of the cold end. Then the above a rguments  apply, and for  K 0 >- 1 one can design a lead 
that p roduces  p rac t i ca l ly  no additional boiling of the coolant in the c ryos ta t .  

We get a dual inequality f r o m  the t r igonomet r i c  functions in the above formulas :  

if I and M are  such  that the square  root  equals 2~r, then Q and T m a  x become indefinitely large ,  as (3) and 
(4) show; the function Mcr  min(I) has  been  der ived f r o m  this condition. When the root  equals  v, Q does  not 
a t ta in  its opt imum value,  and the cor responding  function is Mcrmax( I ) ;  Fig. 1 shows that  K 0 = const  and 
I > Iop t give the in te rva l  between Mopt(Iopt) and M c r m i n ( I ) a s  fa i r ly  smal l ,  while that between M(I) and 
Mcr.min(I  ) is even l ess .  The p rac t i ca l  conclusion is that any accidental  reduct ion or  uneven dis t r ibut ion of 
the vapo r  pass ing  through the lead causes  a ma rked  inc rease  or  ma rked  nonuniformity in the heating.  

The point of in te rsec t ion  of Mcr, max(I) with the a b s c i s s a  I (I = v, Fig. 1) defines (l/S)oDt for  an an-  
- a cooled lead (here doubling the cu r ren t  should inevitably burn  out such a lead, s ince then I = 27r). The ev p-  

orat ion ra te  for  such a lead in the opt imum case  is md iop  t = m 0 + iATq-fl-flA/~?. As we have mcooop t  
= Kopt2i f i ~ / c  for  a cooled lead in the opt imum case ,  the ra t io  of these r a t e s  is m d i o p t / m c o o  opt = (K0 
+ D / 2 ) / K o p  t and is about 49.5 f o r K  0 = 0 and about 39 for  K 0 = 1. 

We have p resen ted  above main ly  the methods of ana lys i s  and calculat ion for  such leads .  Lack  of 
space  has  forced us to omit  fo rmulas  that conf i rm the conclusions but the following commen t s  may  use -  
fully be made:  

Exact  solution of the topic in sect ion 2 r equ i re s  a s e r i e s  of curves  as in Fig. 3 for  var ious  K0, while 
the sequence of calculat ions should contain a s e r i e s  of opera t ions  3) and 2) for  each new K0; 

One should dist inguish K 0 = M0/ I  in (6) and K 0 = M0/Iop t in the functions shown in the f igures ;  

The Kopt of [1] for  leads handling 2 x 500 and 2 • 1320 A cannot be taken as genera l  r e su l t s  because  
the K0 for  these were  different  which may  r e p r e s e n t  an exper imen ta l  e r r o r .  
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NOTATION 

is the lead t e m p e r a t u r e  as a function of d imens ion less  coordinate ;  
a re  the t e m p e r a t u r e s  of the cold and hot ends of the lead and m a x i m u m  t e m p e r a t u r e  (ex- 
ceeding T2) at some  point on the lead; 
is the propor t ion  of the lead length reckoned f r o m  the cold end; 
is the lead length; 
is the c r o s s  sect ion;  
is the cur ren t ;  
is the r ea l  t e m p e r a t u r e  dependence of the specif ic  res i s tance ;  
is the fac tor  in the l inear  approximat ion  for  the t e m p e r a t u r e  dependence of the specif ic 
r e s i s t ance ;  
is the the rma l  conductivity;  
is the latent heat  of evaporat ion;  
is the specif ic  heat of vapor ;  
is the heat  flux f rom the lead into the coolant;  
is the coolant evapora t ion  ra te ;  
is the coolant evapora t ion  ra te  de te rmined  by all heat  sources  other  than Q (this includes 
the par t  of the lead not cooled by the vapors  if this has a r e s i s t ance  and is in contact  with 
the liquid); 
is the evaporat ion ra te  in a c ryos ta t  at z e ro  cur ren t ;  
i s  the r e s i s t ance  of uncooled par t  of lead; 
is the res idual  r e s i s t ance ;  
is the Joule heat produced throughout the lead; 
is the Boi tzmann ' s  constant;  
is the e lec t ronic  charge ;  and 7r = 3.14. 
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D i m e n s i o n l e s s  Q u a n t i t i e s  

D = cAT/r1 
M = ( c / X ) ( l / s ) m  

K = M / I  =(e/2~ffl)~)(m/i) 

M 0 = (c/X)(//s)m0; 
M(0) = ( c / ~ ) ( / / s ) m ( 0 ) ;  

Mop t = (c/X) [(//s)m]opt; 

Iop t = 2 (fl~VX) [(//s)i]opt; 
Kop t = (e/2fiq'fi'f)(m/i)opt; 
K 0 = (e/2VfiX)(mo/i) .  

is the ratio of specific heats;  
is the evaporat ion-rate  parameter ;  
is the current  parameter ;  
is the ra t io  of evaporation rate to current ,  
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